The nano VM Manual

Version 1.3.9
for nano vm 1.0.8
Copyright © 2009 Stefan Pietzonke

jay-t@gmx.net

25" December 2009

Contents

1. Intro 5
2. The Basics 6
2.1 The Registers 6
2.2 Move constants into registers 6
2.3 Move registers into variables 6
2.4 Move registers into registers 7
2.5 Variable declaration 7
2.6 First program 7
2.7 Opcodes 8
3. Consolei/o 9
3.1 Console output 9
3.2 Console input 10
3.3 Opcodes 11
4. Preprocessor 12
4.1 Register names 12
4.2 Includes 12
4.3 Line parser 13
4.4 Opcodes 14
5. Program flow 15
5.1 Jumps 15
5.2 Subroutine calls 16
5.3 The Stack 16
5.4 Opcodes 19
6. Math operators 20
7. Variables 22
7.1 Arrays 22
7.1.1 Opcodes 25
7.2 Strings 25
7.2.1 Opcodes 26
8. Type conversion 27
9. Time functions 27
10. Internal variables 28
11. Files 29
11.1 File handling 29
11.2 Opcodes 31
11.3 Error codes 32
12. Memory 32
12.1 Organization 32
12.2 Virtual memory 32
12.3 Error codes 33
13. TCP/IP Sockets 34
13.1 Introduction 34
13.2 Client/Server 34
13.3 Opcodes 35
13.4 Error codes 36
14. Processes 36
14.1 Introduction 36
14.2 Opcodes 36
14.3 Error codes 37
15. Shell arguments 37
15.1 Introduction 37
15.2 Opcodes 38
16. Usage 38
16.1 The assembler nanoa 38
16.2 The VM nano 38
16.3 Installation 39
16.4 Compiling 40
17. Pointers 41
18. Appendix 42

1. Intro

The nano VM is a register based virtual machine. The VM uses assembler as the programming
language. It's possible to write complex programs. | wrote a small webserver with it.

The main features are:

« data types: byte, short int, long int, double and string.

< arrays
- ANSI output functions: text styles, text locating, cursor moving...
- filei/o

« TCP/IP sockets

« virtual memory support for machines without MMU
+ portable (100% C)

« licensed under the GPL

This manual starts with the simple things and includes a lot examples.

History

| started this project somewhere in 2002. | wanted to find out, if | can write my own VM.
If someone asks me why? Then my answer is: “why not?”. | did it just for fun.

Also | got new skills while developing it. | learned how to do the TCP/IP stuff and much more.
| won't miss this experience.

2. The Basics
2.1 The Registers

The nano virtual machine is register based. There are 32 registers for long integer- and double

numbers. To do something with humbers, they must be moved into registers first. We can
move a constant or a variable into a register.

2.2 Move constants into registers
Lets say we want to move “10” into register “0”. We want to move an integer number, so the
register will be “L0”. The “L” before the register number stands for long integer. The opcode to
do this is “push”. This looks like this:
push_i 10, LO;
The “push_i” opcodes means push a short integer number into an integer register. The
semicolon “;” marks the end of the opcode. The assembler ignores all lines without a semicolon.
An exception are preprocessor commands. They are explained later in this manual.
To move 40000 into register “1”, we would do this:
push 1 40000L, L1;
The “L” behind the number marks it as long int. The ranges for the integer numbers are:
byte : 0 to 255
int (short int): -32768 to 32767
lint (long int): -2147483648 to 2147483649
For double numbers (floating point), we have to use “push_d”:
push_d 123.456, DO;

The range of double numbers is big:

double: -1.7%107-308 to 1.7%*10"7308

To move the int variable “x” into register “1":

push_i x, L1;

2.3 Move registers into variables
To move registers into variables we use the “pull” opcode:
pull i L0, x;

Moves register “L0O” into variable “x”. The variable must be of int type.
An example for a double register:

pull d DO, z;

2.4 Move registers into registers
We can move the contents from one register to another:
move 1 L1, L2;

This moves register “L1” to “L2".
And the double example:

move d D1, D2;

2.5 Variable declaration

We have five types of variables: byte, int, lint, double and string.
To declare a byte variable, which can hold a value from 0 to 255, we do this:

byte b;

For all other types it's the same thing. We have to declare the type and the variable name.

To declare a string we have to create an array:

string s[13];

This string “s” can store 12 chars. You have to set the array size 1 bigger than the string length.
And this is a double array example:

double d[100];

The double array “d” can store 100 double numbers.

2.6 First program

Now we can write a simple program. We declare an int variable and store a value in it:

int x;

push i 10, LO;

pull i L0, Xx; x = 10

push i 0, L1; set return value “0”
exit L1l; exit program

The “exit” opcode ends the program and sets a return value for the shell environment.
We set “0”, so it means no error.
Note: you have to take care that the program flow reaches the “exit” opcode!

If you forget to set “exit”, the assembler stops and prints a warning message. Every program
must have an exit point.

The return value is important if you start your program from a shell script. In your script you can
check the return value. And for example break the script, if your program failed to do something.

2.7 Opcodes
L = long register, D = double register
BV = byte variable, IV = int variable, LV = long int variable
DV = double variable, SV = string variable

V = variable, N = integer variable

{} = optional (arrays)

Variable declaration

byte BV{[NV]};
int IV{[NV]};
lint LV{[NV]};
double DV{[NV]};
string SV[NV];

Variable, constant to register

push b BV, L;
push i IV, L;
push 1 LV, L;
push_d DV, D;

Register to variable

pull b L, BV;
pull i L, IV;
pull 1 L, LV;
pull d D, DV;

Register to register

move 1 L1, L2; Ll to L2
move_d D1, D2; D1 to D2

3. Console i/o
3.1 Console output

To print something in the console, we use the “print” opcode. Here is a “hello world” example:

// hello world

push_i 0, LO;

push i 1, L1;

print_s "Hello world!";
print n L1;

exit LO;

The two slashes “//” at the beginning mark the whole line as a comment. The assembler ignores
this line.

The “print_s” opcode prints a string. The “print_n” opcode prints the number of new lines as set
in the register. In this case it is one new line.

Now open a shell and change to the “nano/prog” directory. Start the assembler by typing:

nanoa hello
In the console you will see something like this:

stefan@tux:~/nano/prog$ nanoa hello

nano assembler 0.99.2 (c) 2006 by jay-t@gmx.net
-== free software: GPL ==-

compiled by gcc version: 3.4.6 on Apr 23 2006
loading program:

hello.na

ok

saving program:

hello.no

ok

Now we start the program:

nano hello

And this is the output:

stefan@tux:~/nano/prog$ nano hello

nano vm 0.99.2 (c) 2006 by jay-t@gmx.net

-== free software: GPL ==-

compiled by gcc version: 3.4.6 on Apr 23 2006
loading program:

hello.no

ok

Hello world!

Now type this:

nano hello -g

And you will see the following:
stefan@tux:~/nano/prog$ nano hello -g

Hello world!

The “-q” option stands for “quiet”. No start messages are printed. But you will still get error
messages if something went wrong.

3.2 Console input

To read data from the console we use the “input” opcode. The following example reads two
numbers and multiplies them:

1| // calc_4.na

2

3| string n[10];

4|

5| print_ s "first number: ";
6| input_s n;

7| val 1 n, LO;

8

9| print_s "second number: ";
10| input_ s n;

11| val 1 n, L1;

12

13| mul_ 1 L0, L1, L2;

14

15| print 1 L2;

16| push i 1, L3;

17| print n L3;

18

19| push i 0, L4;

20| exit L4;

Note: The line numbers are for reference only. They are not a part of the program.
The new opcodes are “input_s”, “val_|I” and “mul_I".

With “input_s” we read a string from the console and store it in the string variable “n”.
The “val_|” opcode converts the string into a number and stores it in the register.

The program reads two strings in line 6 and 10. And converts them to numbers

in line 7 and 11.

In line 13 we multiply the registers “L0” and “L1” and store the result in register “L2".
Or in plain math: L2 = LO * L1. Line 15 prints the result.

Do you remember how to assemble a program? Now assemble “calc_4.na” and check if it's really
working:

stefan@tux:~/nano/prog$ nano calc 4 -q

first number: 200
second number: 10
2000

So everything is fine!

10

3.3 Opcodes

L = long register, D = double register
variable, SV = string variable

<
Il

Console output

print_1 L;

print_d D;

print_s SV;

print_n L; newlines

print_sp L; spaces

print_c; clear console

print_a L; prints the char from the ASCII-code of “L”
example: “65” -> “A"

print_v v; variable name

Textstyles:

print b; bold

print_ij; italic

print_u; underline

print r; reset to normal style

Cursor:

locate Ly, Lx; locates cursor at line “Ly” and row “Lx”

curson; cursor on

cursoff; cursor off

cursleft L; cursor steps to left

cursright L;

cursup L;

cursdown L;

Console input

input 1 L; saves a number in “L”

input d D;

input_s SV; saves a string in “gv”

inputch 1 L; reads one char and converts to the register type

inputch_d D;
inputch s sV;

11

s. Preprocessor
4.1 Register names

In all previous examples we used the normal register names like “L0” or “L1". For simple
programs this may be OK. But if programs get larger, it will be hard to remember what register
“L5"” was for. For this cases you can use the “#setreg” opcodes.

Note: All preprocessor functions start with a double cross “#"”.

To assigh name “null” to register “LO" we use “#setreg_I":

#setreg_ 1 L0, null;

And for double registers “#setreg d”. Here is a new version of “calc_4.na” with register names:
// calc_5.na

fsetreg 1 L0, null;

fsetreg_ 1 L1, one;

$setreg 1 L2, numl;

tsetreg 1 L3, num2;

#setreg 1 L4, mul;

string n[10];

push i 0, null;

push i 1, one;

print_s "first number: ";
input s n;

val 1 n, numl;

print s "second number: ";
input_s n;

val 1 n, num2;

mul 1 numl, num2, mul;
print 1 mul;

print_n one;

exit null;

4.2 Includes

With the include function “#include” we can load a nano assembler file into our program.
If you know C, then you should be familiar with this.

To include file “foobar.nah” we do this:
#include <foobar.nah>

Lets look at this in an example. The following program calculates the circumference of a given
diameter.

The formula is:

circumference = M * diameter

12

1| // circle _l.na

2|

3| #include <math.nah>

4

5| #setreg 1 L0, null;

6| #setreg 1 L1, one;

7| #setreg_1 L2, two;

8|

9| #setreg d DO, pi;

10| #setreg_d D1, inp_d;
11| #setreg_ d D2, circumf;
12

13| string inp[80];

14|

15| push i 0, null;

16| push_ i 1, one;

17| push i 2, two;

18

19| push d m pi, pi;
20|
21| print_ s "diameter: ";
22| input_s inp;
23]
24| val d inp, inp d;
25| mul_d pi, inp_d, circumf;
26|
27| print_s "circumference: ";
28| print_d circumf;
29| print n two;
30

31| exit null;

Line 3 includes the “math.nah” file, which defines math constants. In line 19 the “M_PI”
variable is stored in the pi register.

Line 24 converts the input string into a double number. Line 25 calculates the
circumference.

4.3 Line parser

The line parser functions set the chars for a quote, comma or semicolon. If you want to print
this string:

“foobar”

Then this would not work:

print_s “"foobar”"”;

It would confuse the parser. You have to set a new char for a string begin and end:
#setquote ‘s

print s '"foobar”';

13

4.4 Opcodes

L = long register, D =

S

string
Register names

fsetreg_ 1 L, name;
#setreg d D, name;

#unsetreg_all 1;
#funsetreg_all d;

Includes

#include <filename>

Line parser

#setquote S;
#setsepar S;
#setsemicol S;

double register

unset all L register names
unset all D register names

includes the file to the program

change quote to string
change separator to string
change semicolon to string

The default parser settings are: a string is surrounded by a double quote: "
Opcode arguments are separated by a comma: ,

example:

#setquote '
#setsepar |

print_s '"foo",
print n LO;

mul 1 Ll | L2

14

s. Program flow
5.1 jJumps

Jumps control the flow through a program. All previous examples ran from top to bottom.
The following example prints the numbers from “1” to “10”:

1| // 1loop_l.na

2

3 #setreg 1 L0, null;

4| #setreg 1 L1, one;

5 #setreg 1 L2, loop;

6 #setreg 1 L3, maxloop;
7]

8 push i 0, null;

9 push_i 1, one;

10| push_i 1, loop;

11 push i 10, maxloop;
12

13| lab printloop;

14 print 1 loop;

15 print_n one;

16|

17 inc 1 loop;

18 lseq jmp_1 loop, maxloop, printloop;
19|
20| exit null;

Line 10 sets the loop counter “loop” to “1”. Line 11 sets the “maxloop” register to “10”.
Line 13 declares the label “printloop”. The “inc_|” opcode in line 17 increases the loop
counter by one.

Line 18: The “lIseq_jmp_I" opcode checks if “loop” is less or equal “maxloop”.
If this is true, then the program jumps to the label “printloop”.

15

5.2 Subroutine calls

1| // 1loop_2.na

2|

3 #setreg 1 L0, null;

4 #setreg_ 1 L1, one;

5| #setreg 1 L2, loop;

6 #setreg 1 L3, maxloop;
7

8| push_i 0, null;

9 push i 1, one;

10 push_i 1, loop;

11| push_i 10, maxloop;
12

13| lab printloop;

14| jsr printnum;

15

16 inc_1 loop;

17| lseq jmp 1 loop, maxloop, printloop;
18

19 exit null;
20|
21| lab printnum;
22 print_1 loop;
23| print n one;
24| rts;

This program does the same thing as the first loop example “loop_1.na".
Line 21 to 24 are the subroutine, which prints the number. In line 14 the “jsr” opcode calls
the subroutine “printnum”. In Line 24 the “rts” opcode jumps back to the line 16.

It's possible to call a subroutine from within a subroutine.

5.3 The Stack

On the stack we can store registers and strings. This is useful to give arguments to a subroutine.
This is a simple example:

ston; activate stack

[«..]
stpush 1 X; push x to stack
stpush 1 Vi push y to stack
jsr multiply; call subroutine
stpull 1 num; get result from stack

[vo.]

lab multiply;

stpull 1 L1l; get second argument from stack (y)
stpull 1 LO; get first argument from stack (x)
mul 1 LO, L1, L2;

stpush 1 L2; push result to stack

rts;

16

The stack fills from bottom to top. If we take something from the stack, we get the object on the
top. The object is removed from the stack and saved in a register or string.

The “stpush_|I” opcode pushes a long register to the stack. The “stpull_|” saves the top of the
stack into a long register. The other “stpush” and “stpull” opcodes work the same way.

The “multiply” subroutine is independent from the rest of the program. It can use all 32
registers.

Note: normally you have to save the registers before you call the subroutine. And restore the
registers after the subroutine ends. | will explain this in the next example.

To save all registers we use “stpush_all” opcode. They can be restored with “stpull_all”.

The next example prints a multiplication table:

stefan@tux:~/nano/prog$ nano multable 2 -qg
1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

1| // multable 2.na

2|

3 #setreg 1 L0, null;

4 #setreg 1 L1, one;

5] #setreg 1 L2, two;

6 #setreg 1 L3, x;

7 fsetreg 1 L4, y;

8| #setreg 1 L5, xmax;

9 #setreg 1 L6, ymax;

10 #setreg 1 L7, numlen;

11| #setreg 1 L8, maxspace;

12 #setreg 1 L9, spaces;

13 #setreg 1 L10, num;

14|

15 string numstr[80];

16 lint numv;

17|

18 ston;

19

20| push_i 0, null;

21 push i 1, one;

22 push_i 2, two;

23| push_i 4, maxspace;

24

25 push_i 1, y;

26| push_i 10, xmax;

27 push i 10, ymax;

28

29| lab yloop;

30| push i 1, x;

17

31|
32| lab xloop;

33 stpush all 1;

34 stpush 1 X;

35| stpush_1 Vi

36

37 jsr mul;

38|

39 stpull 1 num;

40 pull 1 num, numv;

41|

42 stpull all 1;

43 push 1 numv, num;

44|

45 str 1 num, numstr;

46 strlen numstr, numlen;
47| sub 1 maxspace, numlen, spaces;
48

49 print_sp spaces;

50| print 1 num;

51

52 inc_1 X;

53| lseq _jmp 1 x, xmax, xloop;
54

55 print_n one;

56 |

57 inc 1 vi

58 lseq jmp_l1 vy, ymax, yloop;
59|

60 exit null;

61

62

63| lab mul;

64 stpull 1 LO;

65| stpull 1 L1;

66

67 mul 1 L0, L1, L2;

68|

69 stpush 1 L2;

70 rts;

The line 18 activates the stack with “ston”. The default stack size is 4096 bytes. If you need
more space, then you can increase the stack with setting the register “stsize”:

#include <vm.nah>
push_1 100000L, stsize;
ston;

Line 33 saves all long registers. Line 34 and 35 push the arguments “x” and “y” to the
stack. Line 37 calls the subroutine “mul”.

The subroutine takes the arguments from the stack (line 64 and 65). After the
multiplication the result is pushed to the stack.

18

The following is a bit tricky. We have to get the result and restore the registers of the main
program. First we store the result from the stack to variable “numv” (line 39 and 40).
Then we take the saved registers from the stack (line 42). Finally the “num” register gets
the return value from the “numv” variable (line 43).

5.4 Opcodes

L = long register, D = double register
SV = string variable

Jumps

jmp label; jumps to label

jsr label; jumps to subroutine label

rts; return from subroutine

jmp_1 L, label; jumps to the label, if “L” is true (1)
jsr_1 L, label; jumps to subroutine, if “L” is true (1)
eq_Jjmp 1 Ll, L2, label; jumps to the label, if "L1" is equal "L2"
neq jmp 1 L1, L2, label; not equal

gr_jmp_1 L1, L2, label; greater
ls jmp 1 L1, L2, label; less

greq jmp 1 L1, L2, label; greater or equal

lseq jmp 1 L1, L2, label; less or equal

eq jsr 1 L1, L2, label; jumps to subroutine, if "L1" is equal "L2"
neq_jsr_1 L1, L2, label; see above!

gr_jsr 1 L1, L2, label;
l1s jsr 1 L1, L2, label;
greq_jsr_1 L1, L2, label;
lseq_jsr 1 L1, L2, label;

Stack
ston; activate stack
stpush 1 L; store register “L” on stack

stpush_d D;
stpush_s Sv;

stpush_all 1; store all long registers on stack
stpush_all d;

stpull 1 L; get register “L” from stack
stpull d D;
stpull_s Sv;

stpull all 1; get all long registers from stack
stpull all d;

show_stack; prints the stack
stelements L; returns the number of elements
stgettype L; returns the object, see types.nah

19

. Math operators

Opcodes with more than one argument, return the result in the last register.

L = long register, D = double register
SV = string variable

inc_1 L; increase by one
inc_d D;
dec_1 L; decrease by one
dec_d D;
add 1 L, L, L;
add d D, D, D;
sub 1 L, L, L;
sub d D, D, D;
mul 1 L, L, L;
mul d D, D, D;
div_1 L, L, L;
div d D, D, D;
smul 1 L, L, L; shift multiply
sdiv_1 L, L, L; shift division
and 1 L, L, L; logical and
or 1 L, L, L; logical or
band_1 L, L, L; bitwise operators
bor 1 L, L, L;
bxor 1 L, L, L;
mod_1 L, L, L; modulo
R set to “1” if true, “0” if false
eq_ 1 L, L, L; equal
eq d D, D, L;
eq_s Sv, Sv, L;
neq 1 L, L, L; not equal
neq d D, D, L;
neq_s sv, sv, L;
gr_1 L, L, L; greater
gr_d D, D, L;
1s 1 L, L, L; less
1s d D, D, L;
greq_1 L, L, L; greater or equal
greq_d D, D, L;
lseq 1 L, L, L; less or equal
lseq d D, D, L;
srand 1 L; initalize random number generator
rand 1 L; get random number
rand_d D; get random number (0 - 1)

20

abs 1
abs_d
ceil d
floor_d

exp d
log d
loglO_d
pow_d
sqrt_d

cos_d
sin_d
tan_d

acos_d
asin d
atan_d

cosh_d
sinh d
tanh_d

absolute value

round to upper
round to lower

rise D1 by the
square root

arcus cosin

hyperbol cosin

21

value
value

power of D2

7. Variables
7.1 Arrays

This creates an array for 10 int numbers:
int array[10];
In this case the array size is declared by a constant. You can use a variable too:

int array[max];

This creates an array with a size of the value of “max”.
The following example stores 10 random numbers in an array. And prints them:

// array 2.na

#setreg 1 LO, null;
fsetreg 1 L1, one;
fsetreg 1 L2, i;
#setreg_1 L3, max;
fsetreg 1 1.4, rand;
fsetreg 1 15, randstart;

push_i 0, null;
push i 1, one;
push_i 9, max;
push_i 2006, randstart;

// declare array with space for 10 numbers
int randa[1l0];

// initialize random number generator
srand_1 randstart;

move 1 null, i;

lab init randa;
rand 1 rand;

// store rand in array randa
move i a rand, randa, 1i;

inc 1 ij;
lseq _jmp_1 i, max, init_randa;

move 1 null, i;
lab print_randa;

// get random number from array randa

move a i randa, i, rand;
print 1 rand;

print n one;

inc 1 i;

lseq jmp 1 i, max, print_randa;

exit null;

22

The “move_i_a” opcode stores the register “rand” in the array “randa”. The “i” register is the
array index and sets the position in the array. In the loop the “i” register counts from 0 to 9.

The “move_a_i” opcode reads from the array.

Multi dimensional arrays
Arrays can have more than one dimension. Lets say we have an array with two dimensions:
int a[5][5];

The array “a” can store 25 numbers. It has 5 rows and 5 columns. Now we want to store 4
at row 3 and column 2. We use “y” for the row and “x” for the column:

01234 (x)

Soy =2 and x = 1. But we can only use one index with the array opcodes. We have to calculate
the index first:

index = y * xsize + x

The xsize for this array is 5:

2 *5+1
11

index
index

The array index is 11. Now here is the example:

// array 3.na
// multi dimensional array

#setreg 1 LO, null;
fsetreg 1 L1, one;
#setreg_ 1 L2, index;
#setreg 1 1.3, xsize;
fsetreg 1 L4, ysize;
#setreg_ 1 L5, x;
#setreg 1 L6, y;
fsetreg 1 17, num;

push_i 0, null;

push i 1, one;

push_i 5, xsize;
push_i 5, ysize;

int xsizev;

int ysizev;

pull i Xsize, Xsizev;
pull i ysize, ysizev;

int a[ysizev][xsizev];

23

push_i 4, num;
push_i 2, v;
push i 1, x;

// calculate array index

mul 1 y, Xsize, index;
add 1 index, x, index;
move i a num, a, index;
print_s "stored ";

print 1 num;

print_s " in index: ";
print 1 index;

print n one;

exit null;

Free arrays

To free the allocated memory of an array, you can use “dealloc”. If a program tries to read
or write to a freed array, you get a “overflow” error message.

dealloc a; free array “a”

Nano deallocates all arrays on program end. But you can use this to resize an array.

Resize arrays

To resize an array we have to deallocate it first. Then we declare it with a new size:
int a[10];

[...]

dealloc a;

int a[20];

24

7.1.1 Opcodes

L = long register, D = double register

BV byte variable, IV = int variable, LV = long int variable
DV double variable

LTI = array index

Register to array

move i a L, IV, LI;
move 1 a L, Lv, LI;
move d a D, DV, LI;
move b a L, BV, LI;

Array to register

move a i v, LI, L;

move a 1 Lv, LI, L;

mova_a_d DV, LI, D;

move_a b BV, LI, L;
7.2 Strings

This creates a string with space for 12 chars:

string s[13];

To copy some text to the string variable “s”, we use “move_s”:
move_s “Hello”, s;

And add a string:

add s s, “ world!”, s;

“uan

Now the string “s” contains “Hello world!”.
And converting it to uppercase:

ucase S;
Right, the string “s” is now “HELLO WORLD!".
If we want to get a char from a string, we use “move_p2s”:

push_i 6, LO;
move_p2s s, LO, ch;

This copies the char at position 6 to string “ch”. And the string “ch” contains now “W".
To copy a char to a string, we use “move_s2p”:

push i 0, LO;
move_s2p “h”, s, LO;

The string “s” is “hELLO WORLD!".

25

String Arrays

This creates a string array with space for 5 strings with a length of 30 chars:
string s_array[5]1[31];

To copy text to the string array, we use “move_s a”:

push_i 0, LO;
move s a “foo bar”, s_array, LO;

The “L0O” register is the array index.
To copy from a string array to a string, we use “move_a_s":

push i 0, LO;
move a s s array, LO, s;

This copies the string to the string variable “s”.

7.2.1 Opcodes

L = long register, D = double register
SV = string variable

LT = array index

move_s Svl, Ssv2; move string "SV1" to "Sv2"

move_p2s Svl, L, Sv2; move char at position "L" of "SV1" to "Sv2"

move_ s2p svl, sv2, L; move string "SV1" to position "L" of "Sv2"

move_s_a Svl, sv2, LI; move string “SV1” to string array *“Sv2”

move a s svl, LI, SV2; move from string array “SV1” to string “SvV2”

add_s Svl, Ssv2, SvV3; add string "SV1" and "SV2" to "SV3"

strlen sv, L; return string length to "L"

strleft Ssvl, L, SV2; move the left "L" chars of "SV1" to "sv2"

strright Svl, L, SV2; move the right "L" chars of "SV1" to "Sv2"

ucase Sv; to uppercase

lcase SV; to lowercase

char L, SV; makes the string "SV" from the ASCII-code of "L"

asc sv, L; makes the ASCII-code "L" from the string "SV"
| -——--- set to "1" if true, "O0" if false

eq_s svl, svz2, L; equal

neq_s Svl, sv2, L; not equal

26

s. Type conversion

L = long register, D = double register
SV = string variable

val 1 sv, L; string to number

val _d SV, D;

str 1 L, SV; number to string

str_d D, S;

2int D, L; double to int

2double L, D; int to double

char L, S; ASCII-code to string: 65 -> A
asc S, L; string to ASCII-code: A -> 65

9. Time functions

time; returns the current time to the following int variables:
_year 1900 - x

_month 1 - 12

_day 1 - 31

_hour 0 - 23

_min 0 - 59

_sec 0 - 59

_wday 1 -6 weekday (1 = sunday ... 6 = saturday)
_yday 1 — 366 yearday

ton; timer on

toff; timer off

The time between the "ton" and "toff" calls is stored in the lint variable "_timer®".
The time is in "ticks". To get seconds, divide by " _timertck" (ticks per second).

wait s L; waits "L" seconds
wait_t L; waits "L" ticks (1/50 sec)

27

10. Internal variables

name | default |
____________ o e e
_break | 1 1 = break with Ctrl-C enabled, 0 = disabled
_timer | number of ticks between "ton" and "toff"
_timertck ticks per second
membsize 4096 memory block size (bytes) L32
vmbsize | 1048576 vmm swapfile size (bytes) L33
vmcachesize 1024 array element cache L34
vmuse 0 1 = virtual memory enabled, 0 = disabled L35
stsize | 4096 stack size (bytes) L36
_intsize 2 size of int (short int) (bytes)
_lintsize 4 size of lint (long int) (bytes)
_doublesize | 8 size of double (bytes)
_machine host machine number:
1 = Amiga

| 2 = PC
_os host OS number
_err_alloc 0 1 = memory error handling on, 0 = exit on error
_alloc | memory error code
_err_file 0 1 = file error handling on, 0 = exit on error
_file file error code
_sock | socket error code
_year 1900 - x
_month 1 - 12
_day | 1 - 31
_hour 0 - 23
_min 0 - 59
_sec | 0 - 59
_wday 1 -6 weekday (sunday - saturday)
_yday 1 - 366 yearday
_version | version number
_vmregs number of registers
_language language setting
_fnewline | newline string setting (fwrite n, swrite n)
_fendian endianess setting (file read/write)
_process process error code

28

11. Files
11.1 File handling

To work with a file, it must be opened first:
fopen L0, “file”, “r";

Register "LO" contains the file number, the name is "file", and the mode is read "r". Other modes
are: "a" append and "w" write.

Close a file:

fclose LO;

To read from a file:

fread s L0, string

As you may have guessed "string" is a string variable and "L0" is the file number.
Here is an example:

// txtsave.na

string file[256];
string line[256];

print_s "file to save text? ";
input_s file;
push_i 0, LO;
fopen L0, file, "w";
push_i 1, L1;
print_s "Enter the text. Empty line to exit...";
print n L1;
lab input;
print_s RERI
input_s line;
fwrite_s L0, line;
fwrite n L0, L1;
neq_s line, "", L2;
jmp_ 1 L2, input;
fclose LO;
push_i 0, LO;
exit LO;
Line feed

The "line feed" marks the end of a line in a text file. The two chars to mark this are:

CR (carriage return, ASCII code: 13)
LF (line feed, ASCII code: 10)

The terms "carriage return" and "line feed" are from the good old typewriter age.
Every operating system uses a different code:

29

DOS, Windows: CRLF

Mac OS: CR
Amiga OS, Unix, Linux: LF
?: LFCR (Yes! Even this weird thing seems to be around!)

If we read a line with "fread_Is", nano takes care of all codes. It can handle all line feeds. Writing
a line feed with "fwrite_n" is different. We have to choose a code. This can be done with some
code like this:

string cr[2];
string 1f[2];

push_i 13, LO;

char LO, cr;

push_i 10, LO;

char Lo, 1f;

move_s cr, _fnewline;

add_s _fnewline, 1f, _fnewline;

This sets " fnewline" to CRLF. The "fwrite_n" opcode uses CRLF now. There is a default setting for
" fnewline". It's the host code. On a Windows machine "_fnewline" is set to CRLF, and so on.

Binary files

There are two ways to store binary numbers in a file:
little endian
big endian

If we write the long int "76543" to a file, we get this hex code:

little endian: FF 2A 01 00
big endian: 00 01 2A FF

The long int is four bytes long. Each number pair is one byte.

The difference is: "little endian" is the other way round as "big endian". We have to know the
endianess of a binary file, to read and write numbers. Otherwise we would read and write false
numbers. The endianess is set by the variable " _fendian".

An example:

#include <file.nah>

tsetreg 1 L0, null;
#setreg 1 L1, file;
#setreg 1 L2, n;
tsetreg 1 L3, endian;

push i 0, null;

push i 0, file;

push 1 76543L, n;

push i endian big, endian;

pull i endian, _fendian;

fopen file, "big endian", "w";
fwrite 1 file, n;

fclose file;

exit null;

30

11.2 Opcodes

L = long register, D = double register
BV = byte variable, SV = string variable

Open/close

fopen L (file number), SV (name), SV (type); opens a file
types are: "r" read
"w" write
"a" append

"rw" read/write
"wr" write/read
"ar" append/read

fclose L (file number); closes a file

Read/write

fread b L (file number), L; read byte

fread ab L (file number), BV, L (length); read byte array
fread i L (file number), L; read int

fread 1 L (file number), L; read lint

fread d L (file number), D; read double

fread_s L (file number), SV, L (length); read string

fread 1s L (file number), SV; read line

fwrite b L (file number), L; write byte

fwrite ab L (file number), BV, L (length); write byte array
fwrite i L (file number), L; write int

fwrite 1 L (file number), L; write lint

fwrite d L (file number), D; write double

fwrite s L (file number), SV; write string
fwrite s1 L (file number), L; write lint as string
fwrite sd L (file number), D; write double as string
fwrite n L (file number), L; write "L" newlines
fwrite sp L (file number), L; write "L" spaces
Other

fsetpos L (file number), L; set stream position
fgetpos L (file number), L; get stream position
frewind L (file number); rewind stream

fsize L (file number), L; get file size in bytes
fremove L (file number), SV (name); remove file

frename L (file number), SV (old), SV (new); rename file

31

11.3 Error codes

The default setting is to exit the program, if there is a “file error”. This can be: a file can't be
opened, or read... However in most cases you want a bit more control over this.

You can set the variable “_err_file” to “1” and switch on the error handling. Now every file
operation returns a code to the variable “_file”.

The codes are defined in the “file.nah” include:

variable code

err_file ok no error

err file open can't open file

err file close can't close file

err_file read can't read from file

err file write can't write to file

err file number file number not in legal range
err_file eof end of file reached while reading
err_file fpos wrong position in file

12. Memory

12.1 Organization
Variables are allocated in memory blocks. The default size is 4096 bytes per block.
Up to 64 blocks can be used. Nano allocates the needed blocks automatically. If you need more
memory, you can increase the blocksize with the “membsize” register:
#include <vm.nah>
push_i 8192, membsize;

// declare your variables:

int foo;
int bar;

You have to set “membsize” before you declare your variables.

Arrays are allocated as their own block. So “membsize” has no effect on them.

12.2 Virtual memory

If you need lots of memory and your machine has no MMU, then you can use the built in virtual
memory driver.

Note: only arrays can be stored in VM!

You have to set the path, where the swapfile will be created:
Set a “NANOTEMP” environment variable to the directory:

Amiga OS:

setenv NANOTEMP “T:vm_"

Nano adds the current time to the filename: “vm_hhmmss”.

32

The “vmuse” register must be set to “1” to enable VM. The “vmbsize” register sets the swapfile
size in bytes. The default is 1048576 bytes (1 MB). Just multiply with a factor to increase.

The “vmcachesize” register sets the cachesize for array elements. The default is 1024.
Example:

#include <vm.nah>

push i 1, vmuse; activate virtual memory
push_i 256, LO;

mul 1 vmbsize, L0, vmbsize; set swapfile size to 256 MB
push_i 10000, vmcachesize; cache for 10000 elements

// declare your arrays:

lint big[10000007];

12.3 Error codes
The default setting is to exit the program, if nano can't allocate memory.
You can set the variable “_err_alloc” to “1” and switch on the error handling. Now nano returns
an error code to the variable “_alloc” after each array allocation.

The error codes are defined in the “memory.nah” include:

variable code
err alloc ok allocation done
err_alloc_nomem out of memory

33

13. TCP/IP Sockets

13.1 Introduction
Sockets are the standard interface for TCP/IP. They are used to send data through a network.
Every computer on a network has a address like a phone number. To send data we have to know
the right address and port number.

The port number is to identify the service. If you browse the web then you use 80, http.
Downloading a file from a FTP server goes over port 21, and so on.

The port numbers are going from 0 - 65535. The numbers up to 1023 are reserved for standard
services. So we should use numbers from 1024 upwards.

13.2 Client/Server

There are two kinds of sockets: client and server.
Now it's time for a little example. Let's say we have two computers in a network:

foo (192.168.1.1) and bar (192.168.1.2)

We want “foo” to be the server and “bar” is the client. Foo waits on port 2000 for an incoming
message. The client asks for a message and sends it to the server. Here is the server:

1| // simple server

2

3| #setreg 1 L0, null;

4 #setreg 1 L1, one;

5 #setreg 1 L2, port;

6| #setreg 1 L3, len;

7

8 string buf[256];

9|

10 push i 0, null;

11 push_i 1, one;

12| push_i 2000, port;
13

14 ssopen null, "192.168.1.1", port;
15| ssopenact null;

16

17 sread 1 null, len;
18| sread_s null, buf, len;
19
20 print_s "message: ";
21| print s buf;
22 print n one;
23
24| sscloseact null;
25 ssclose null;
26
27| exit null;

The “ssopen” opcode in line 14 opens the server socket. The arguments are: the socket number,
the ip and the port number. The “ssopenact” opcode in line 15 waits for incoming data.

The “sread_|” opcode in line 17 reads the length of the incoming string. The “sread_s” in line 18
reads a string with a length of “len”.

The “sscloseact” opcode in line 24 ends the active connection. In line 25 the server socket is
closed with “ssclose”.

34

And here is the client program:

1| // simple client

2|

3 #setreg 1 L0, null;

4 #setreg_ 1 L1, one;

5| #setreg 1 L2, port;

6 #setreg 1 L3, len;

7

8| string buf[256];

9

10 push_i 0, null;
11| push_i 1, one;

12 push i 2000, port;
13

14| print_s "message? ";
15 input_s buf;

16 strlen buf, len;
17|

18 scopen null, "192.168.1.1", port;
19
20| swrite 1 null, len;
21 swrite s null, buf;
22
23| scclose null;
24
25 exit null;

The “scopen” opcode in line 18 opens the client socket. And the “scclose” line 23 closes the
client socket. They work the same way as the server opcodes.

13.3 Opcodes

L = long register, D

= double register

BV = byte variable, SV = string variable

Open/close

ssopen L (socket
ssopenact L (socket
sscloseact L (socket
ssclose L (socket
scopen L (socket
scclose L (socket
Read/write

sread b L (socket
sread_ab L (socket
sread i L (socket
sread 1 L (socket
sread_d L (socket
sread_s L (socket
sread_ls L (socket

number),
number) ;
number) ;
number) ;

SV (ip), L (port);

number),
number) ;

SV (ip), L (port);

number), L;
number), BV, L (length)
number), L;
number), L;
number), D;
number), SV, L (length);
number), SV;

35

opens a server socket
waits for clients
closes connection
closes a server socket

opens a client socket
closes a client socket

read byte

read byte array
read int

read lint

read double
read string
read line

swrite b L (socket number), L; write byte

swrite ab L (socket number), BV, L (length) write byte array
swrite i L (socket number), L; write int

swrite 1 L (socket number), L; write lint

swrite d L (socket number), D; write double

swrite s L (socket number), S; write string

swrite sl L (socket number), L; write lint as string
swrite sd L (socket number), D; write double as string
swrite n L (socket number), L; write "L" newlines
swrite sp L (socket number), L; write "L" spaces
Other

hostname SV (name); returns the local hostname
hostbyname SV (name), SV (ip); returns the ip
hostbyaddr SV (ip), SV (name); returns the name
clientaddr L (socket number), SV (ip); returns the client ip

on a server socket

13.4 Error codes

The socket opcodes return an error code to the variable " _sock". Take a look at the examples
"client.na" and "server.na" for more info.

The codes are defined in the “socket.nah” include.

14. Processes
14.1 Introduction

The process opcodes are for launching programs from nano. The new process is independent
from the nano program. It runs asynchron. But your program can wait until the new process
ends. So it will run synchron.

To launch a program we use “runpr”:

runpr “foobar”, process;

This launches the program “foobar”. In the register “process” we get the process number.
If we want to wait until the program “foobar” ends we can use “waitpr”:

waitpr process, retcode;

We must call it with the process number and get back the return code in the “retcode” register.

14.2 Opcodes

L = long register, SV = string variable

runpr SV (program name), L (process number); launch program
runsh SV (program name), L (return code); launch shell
waitpr L (process number), L (return code); wait until process ends

36

14.3 Error codes

The process opcodes return an error code to the variable “_process”.
The error codes are defined in the “process.nah” include:

variable code
err process_ok program launched
err_process fail can't launch process

15. Shell arguments
15.1 Introduction

To get the number of arguments we use “argnum”. You can read the arguments with the
“argstr” opcode.

The following example prints the shell arguments:

1| // args.na

2| // read shell arguments

3

4| #setreg 1 L0, null;

5 #setreg 1 L1, one;

6 #setreg 1 L2, no_args;
7] #setreg 1 L3, args;

8 #setreg 1 L4, i;

9

10| string arg[256];

11

12 push_i 0, null;

13| push_i 1, one;

14 push i -1, no_args;
15

16| argnum args;

17 eq jmp 1 args, no_args, no_arguments;
18

19| print_s "arguments: ";
20 print_n one;
21 move 1 null, i;
22|
23| lab print arguments;
24 argstr i, arg;
25| print_s arg;
26 print_n one;
27
28] inc 1 i;
29 lseq jmp 1 i, args, print arguments;
30
31| exit null;
32
33| lab no_arguments;
34| print s "no arguments!";
35 print_n one;
36 exit null;

In line 16 the number of arguments is stored in the “args” register. The line 17 jumps to the
label “no_arguments” in line 33, if “args” is “-1”. This means there are no arguments.
The loop from line 23 to 29 prints all arguments.

37

15.2 Opcodes

L = long register, SV = string variable

argnum L; returns the number of shell arguments:

-1 = no arguments, 0 = one argument...
argstr L, SvV; moves the argument with index "L" to a string
16. Usage

16.1 The assembler nanoa

To assemble program “foo.na”:

$ nanoa foo

Options:

-lines= max source lines

-ops= max opcodes

-vars= max variables

-labs= max labels

-objs= max size of the output file (KB)
-s strip debug info

16.2 The VM nano

To run program “foo.no”:

$ nano foo

Options:
-q quiet mode: no start messages
-stacks= stacksize (KB)

Amiga OS note:

You have to increase the stack before running the programs.
| use “stack 100000” and this works fine. Maybe you need to use a higher value.

38

16.3 Installation
Rename the binaries which are fitting to your machine to “nanoa” and “nano”.
Amiga OS
Example: nano is in “Work:nano”:
Insert the following lines to your “user-startup” file:
path Work:nano add
setenv nanoinc “Work:nano/include/”
setenv nanoprog “Work:nano/prog/”
setenv nanotemp “T:vm "

Linux

Open a shell and "cd" to the nano directory.
Create the nano directory in your homedir:

$ cp prog ~/nano/prog

Copy nanoa and nano to “/usr/local/bin”:

$ su

cp nanoa /usr/local/bin

cp nano /usr/local/bin

Copy the includes:

cp -r include /usr/local/share/nano

Copy the manual:

cp -r manual /usr/local/doc/nano

Set the env variables. | did this in the “~.bashrc” file:
#nano

export NANOPROG=/home/yourname/nano/prog/
export NANOINC=/usr/local/share/nano/include/
Windows

Example: nano is in “C:\nano”:

Insert the following lines to your "autoexec.bat" file:
set PATH=c:\nano)\;%PATHS%

set nanoinc=c:\nano\include\

set nanoprog=c:\nano\prog\
set nanotemp=%TEMP%\vm

39

16.4 Compiling
You need the gcc ¢ compiler.
Amiga OS

You can find gcc on the Aminet archive: http://aminet.net

Linux

Install gcc with your packet manager. Read the manual of your distribution how to do it.

Windows

Install the MinGW tools from http://www.mingw.org

To compile nano, open a shell and do the following:
$./configure

$ make

$ su

make install

Porting nano

Here is a short list with the things that must be changed:

Makefile
CFLAGS set the needed compiler options
LDFLAGS
include/
host.h
Define a new machine and 0S type.
Set endianess.
Set CLOCKS_PER_SEC if needed.
PATH_SLASH _CONV set TRUE, if OS uses backslash in paths.
vm/
arch.h
wait_sec Use the delay functions of your OS.
wait_tick
exe socket.c If your OS doesn't support BSD sockets, you have to
change some stuff there.
exe_process.c Process handling. This is platform dependent code.

40

17. Pointers
17.1 Intro

With the “getaddress” and “pointer” opcodes, you can do indirect addressing of arrays.

// pointer.na pointer test

#setreg 1 L0, null;
#setreg 1 L1, one;
#setreg 1 L2, ind;
#setreg 1 L3, max;
#setreg 1 L4, address;
#setreg 1 L5, i;
int a[1l0];

push i 0, null;
push i 1, one;
push_i 0, ind;
push i 9, max;

lab setarray;

move i a ind, a, ind;
inc 1 ind;
lseq jmp_ 1 ind, max, setarray;

// get address of array a

getaddress a, address;
int b[1l];
move_1 null, ind;

// set address of a to variable b, at label readarray
pointer address, b, readarray;

lab readarray;

move_a i b, ind, 1i;

print 1 i;

print n one;

inc_1 ind;

lseq jmp 1 ind, max, readarray;
exit null;

17.2 Opcodes

L = long register, V = array variable

getaddress var, L; returns the address of the variable
pointer L (address), V, label sets the address to variable V at label
gettype L (address), L (type) returns the type of variable

41

18. Appendix

There are some modifiers for number types:
I for an integer number.

L for a long integer number.

D for a double number.

% for a byte number.

And for number formats:

B for a binary number with ones and zeros only.

& for a hex number.

Lets see it in an example:

push b B10110111%, LO;

The B at the beginning marks the number as binary. The % sign at the end tells the assembler
that is a byte number.

push i &FF, LO;

The & sign at the beginning marks the number as hex. The chars range from A to F.
That numbers go from 10 to 15.

42

